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Abstract

We report the first observation of Bragg scattering from atomic ions confined in an electromag-

netic trap. The results reveal long-range order and give evidence for bulk behavior in a strongly

coupled collection of laser-cooled 9Be+ ions in a Penning trap. Long-range order emerges in approx-

imately spherical clouds with as few as 5×104 ions (cloud radius ro ≈ 37a where a ≡Wigner-Seitz

radius). Bulk behavior is evident with 2.7 × 105 trapped ions (ro ≈ 65a), with Bragg scattering

patterns characteristic of a body-centered cubic lattice.
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Systems of crystallized charged particles have gained wide interest, with implications for the pure

Coulomb systems of one-component plasmas [1], trapped atomic ions [1,2,3], ion storage-rings [4],

and dense astrophysical matter [5], and for the shielded Coulomb systems of colloidal suspensions [6],

and dusty plasmas [7]. For example, Paul RF traps have been used to study crystallization and

melting of small “Coulomb clusters.” [8] In both the RF and Penning traps, cold ions form shell

structures when the dimensions of the system exceed a few interparticle spacings. [9,10] Such

transitions of Coulomb fluids into crystal-like structures are examples of Wigner crystallization in

the classical regime (i.e., the wavefunctions of the particles do not overlap). However, the pure

Coulomb systems realized so far are not large enough to neglect surface effects and hence do not

allow observation of infinite-volume or bulk behavior. [11] For example, the “micromotion” of ions

in the RF trap, which generates the trapping potential, can cause heating which limits the smallest

dimension of laser-cooled ion collections to a few interparticle spacings [3]. The drawback of the

Penning trap (which uses static trapping fields) vis-a-vis the RF trap is that the ions rotate about

the trap magnetic field – this has hindered imaging of the ion crystals as seen in Paul traps [3,8,10].

However, the Penning trap, which has no micromotion heating, can potentially store very large

systems of laser-cooled ions and hence was used in the studies here.

In related works, optical lattices formed by the interference of intersecting laser beams have

been used to localize and cool neutral atoms. [12,13] Unlike the ion Wigner crystals, optical lattices

are not formed by the interaction of the confined atoms; rather, they conform to the periodic

confinement wells created by the laser standing waves. Also, trapped ions differ from systems of

colloidal suspensions and dusty plasmas in that the ions interact through a pure Coulomb (rather

than a Yukawa-type) potential, and the charges (q) and masses (m) of the particles are identical.

A system of ions confined in a Penning trap (hereafter called “ion cloud”) is an example of

a one-component plasma (OCP). [1] An OCP is a system of identical charged particles which is

neutralized by a uniform-density background of opposite charge. The thermodynamic properties

of an ion OCP are fully characterized by the coupling parameter,

Γ ≡ 1

4πεo

q2

akBT
, (1)

the ratio of the nearest-neighbor Coulomb interaction energy to the thermal energy (kBT ) of an ion.

The Wigner-Seitz radius a, a measure of the interparticle spacing, is defined by 4πa3no/3 = 1, where

no is the density of the neutralizing background (which is formally equivalent to the confinement

fields in ion traps), and is equal to the ion density at low temperatures.[1] An unbounded OCP is

predicted to exhibit liquid-like behavior for Γ > 2 and undergo a liquid-solid phase transition to

a bcc lattice at Γ = 172. [14] The OCP has become one of the most carefully studied models in

statistical physics because the interaction is simple and because of its importance in understanding

dense astrophysical plasmas. [5] In contrast to the growing amount of theoretical works, there are
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few laboratory systems to test the models. Until now, only shell structures have been observed

with N < 1.5 × 104 ions in a Penning trap, [9] and in a race-track rf trap [3,10]. This shell

phase can be viewed as arising from the strong influence of the curved surface of a small cloud.

[11] Simulation studies show that the ions in each shell form distorted (2D) hexagonal lattices,

exhibiting short-range order with little correlation between shells. [4,15]

We report here the first observation of Bragg scattering from laser-cooled ions in a trap. [16]

In ion clouds with all dimensions much larger than the Wigner-Seitz radius, we find interesting

departures from the earlier observed shell phase [9]. Shell structures are still observed with N <

2 × 104 ions (or radii ro < 27a for spherical clouds). Long-range order emerges with as few as

N ≈ 5× 104 ions (ro ≈ 37a). We show that for N ≈ 2.7× 105 ions (ro ≈ 65a) the Bragg scattering

pattern is consistent with a bcc lattice. The ion crystals are estimated to be > 150 µm (∼ 20a)

long on a side.

Theoretical estimates indicate that ro >∼ 50a is required for bulk behavior. [11,17] We have built

a large Penning trap wherein clouds with N ≤ 2.7×105 ions (ro ≤ 65a) and Γ values as high as 600

have been attained. The trap is formed by a 127 mm long stack of cylindrical electrodes with 40.6

mm inner diameter, in a 10−8 Pa vacuum. An NMR superconductive magnet provides a uniform

magnetic field (Bo = 4.5 T) parallel to the trap axis (z-axis), confining the ions in orbits around

this axis (cyclotron frequency of Ω/2π = qBo/m = 7.55 MHz). A static electric field, generated by

applying Vo = 1 kV between the end and central electrodes, confines the ions along the z-axis near

the center (z=0) of the trap (a single ion oscillates at ωz/2π = 795 kHz).

The trapped 9Be+ ions are cooled by a laser beam propagating along the z-axis (Fig. 1) and

are optically pumped into the 2s 2S1/2(MI = −3
2 ,MJ = −1

2) state by tuning the laser frequency

(λ ≈ 313 nm) slightly below the 2s 2S1/2(−3
2 ,−

1
2) −→ 2p 2P3/2(−3

2 ,−
3
2) resonance frequency. [2]

A laser-cooled ion cloud first condenses into a bounded fluid state (a liquid drop). In a Penning

trap with quadratic potential and negligible image charge effects, a laser-cooled ion cloud forms a

uniform density spheroid bounded by (x2 +y2)/r2
s +z2/z2

s = 1 (for a spherical cloud, rs = zs ≡ ro).
[18] The residual thermal motions are superimposed upon a rigid rotation of the ion cloud about

the z-axis. The aspect ratio α ≡ zs/rs of the spheroid varies with its rigid rotation frequency ωr.

[18,19] A laser beam directed normal to the z-axis (not shown in Fig. 1 and turned off during the

Bragg scattering) can exert a torque and change ωr within 40.8 kHz < ωr/2π < 7.51 MHz, thus

controlling the shape and density of the cloud. [18] An f/5 imaging system along the x-axis, with a

laser beam along the z-axis (beam waist ∼ 0.4mm >∼ rs, power ∼ 200µW), gives a side-view image

of the ion cloud, thus monitoring zs and rs which, in turn, yields α, a, ωr , no, and N. [18]

Bragg scattering is used to study the spatial correlations because the rigid rotation of the ion

cloud makes it difficult to image a crystal lattice. The photons resonantly scattered by the ions
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interfere to form Bragg-scattering peaks at certain angles determined by the crystal lattice. Because

λ/a ∼ 0.04, the diffraction pattern occurs very close to the laser beam direction (Fig. 1), within

about 0.1 rad. Since the ions scatter far fewer photons than the vacuum windows, special care is

needed to minimize this potentially strong background.

As shown in Fig. 1 (not to scale), the laser beam (ki = 2πẑ/λ) propagates first through

a linear Polarizer 1, and then into the vacuum chamber. Upon exiting the ion trap, the laser

beam is diverted away from the detector by a set of mirrors. The photons scattered by the ions

(ks = 2πk̂s/λ) are collected by Lens 1 (f = 19 cm, z = 25.5 cm from the ions), forming an image

of the ion cloud at a small aperture (A) to reduce the background. The diffraction pattern is then

relayed by Lens 2 (f ≈ 24 cm) to the photocathode of a photon-counting imager (z ≈ 160 cm).

The linear Polarizer 2 is inserted after the aperture. The polarization axes of Polarizers 1 and 2

are crossed to attenuate, with extinction ratio ≥ 6 × 105, the stray light which leaks through the

small aperture and has the same polarization as Polarizer 1. The photons scattered from the ions,

however, are attenuated only by a factor of 2 since they are mainly circularly polarized.

The Bragg scattering from ion clouds with N >∼ 5 × 104 ions (ro >∼ 37a) exhibits long-range

order characteristic of a crystal. Because of the ion cloud rotation (ωr/2π ∼ 105 Hz), the dots

in a crystalline Laue pattern are rotated into rings. (A ring pattern will also be produced by a

crystalline powder or fluid.) Fig. 2a gives an example of a Bragg scattering pattern obtained with

N = 2.7×105 trapped ions with long-range order. The circular intensity maxima are Bragg peaks,

with radii inversely proportional to the Wigner-Seitz radius a. To facilitate analysis, a differential

scattering cross-section is generated from each diffraction pattern by averaging the photon counts

azimuthally about the z-axis, as illustrated in Fig. 2b. A density-independent plot is obtained by

using the dimensionless parameter ∆ka, where ∆k is the length of the vector ∆k = ki − ks. This

can be compared with the interference function [20] or the static structure factor S(∆ka) calculated

for various systems. For incoherent scattering, S(∆ka) = 1. The short correlation lengths (∼ a)

of the fluid and shell phases are reflected in their S(∆ka), shown in Fig. 2c, [21] which have only

one strong, narrow peak. In contrast, Figure 2b has 4 strong, narrow peaks indicating the presence

of a crystal. Similar diffraction patterns for N > 5× 104 ions (ro > 37a) have been obtained with

up to 9 narrow Bragg peaks. Such long-range order is not observed every time we cooled an ion

cloud. In this case, if a crystal was formed, the reason it was not observed may be that some crystal

orientations did not produce Bragg peaks.

The crystal structure may be determined from the positions of the Bragg peaks. [22] For

an unbounded OCP the minimum-energy structure is a body-centered cubic (bcc) lattice. [14]

However, there are metastable structures with slightly higher energies, such as the face-centered

cubic (fcc) and the hexagonal close-packed (hcp) lattices. [11,23] In a bounded ion cloud, residual
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surface effects may determine which structure dominates. An analysis of data from a cloud with

N ' 2.7× 105 ions (ro ≈ 65a) shows that the diffraction patterns are consistent with a bcc lattice.

Figure 3a, the evidence of bulk behavior, shows a histogram of the number of observed Bragg peaks

(not intensity) as a function of ∆ka, constructed with no adjustable parameters from 14 diffraction

patterns obtained from the same ion cloud (N = 2.7× 105 ions) with various Wigner-Seitz radii

(20 < a/λ < 27). Typically the ion cloud was heated and recooled several times between each

recorded pattern. The scatter of the peak positions in Fig. 3a is consistent with the ∼ 5 percent

uncertainty in the determination of the Wigner-Seitz radius a from the observed value of the aspect

ratio α. This uncertainty also makes comparison with known lattices difficult for ∆ka > 10, where

the density of Bragg peaks is higher. However, for ∆ka < 10, the bcc lattice is the best match to

the observed patterns. Having identified the lattice, we can also determine the Wigner-Seitz radius

a by fitting each pattern to the calculated bcc peaks. With these fitted values of a, the histogram

Fig. 3b matches the bcc lattice very well even as far as ∆ka ∼ 14.

The minimum size of the ion crystals can be estimated from the intensity widths of the Bragg

peaks (see Fig. 2b). For a perfect crystal of characteristic length L, the finite-size broadening of

the Bragg peaks is estimated by the formula L ≈ λ/∆, where ∆ is the angular FWHM of the Bragg

peak. [24] We find that, on average, ∆ ∼ 2 mrad. This gives L ∼ 150 µm (∼ 20a). With the

typical density (no ∼ 5× 108/cm3), this corresponds to a few thousand ions per crystal. This is a

lower limit since the observed widths can be instrumentally broadened, as suggested by the small

change in ∆ with N .

The relative intensity of the Bragg peaks indicates that the ions do not freeze into a “powdered”

sample of randomly oriented crystals. For example, in some cases, peaks expected in such a powder

pattern are missing. The crystallized region may be surrounded by at least ' 20 shells on the cloud

surface (based on a simulation with 2×104 ions) [25]. For a cloud with 2.7×105 ions these boundary

shells contain about 2.3 × 105 ions. The scattering from the shells may contribute to the size of

the first Bragg peak, but will produce a fairly flat background (S(∆ka) ∼ 1) for the other peaks.

As shown in Fig. 2b, the Bragg peaks are superimposed upon a broad background. Many of the

observed Bragg peaks are often as large as, if not a few times larger than, the background. If these

are Bragg peaks from a single crystal, the crystal must contain N ∼ 104 ions (or L ∼ 240 µm or

35a on a side) in order to produce peak intensities greater than the background due to 2.3× 105

ions.

In the future, we hope to remove the averaging due to the rigid rotation by stroboscopic detection

of the Bragg scattering. This could be useful in determining whether the ions form more than one

crystal. It may reveal other types of crystals in the ion OCP. Quasicrystals, for example, would

produce a five-fold azimuthal symmetry in the diffraction pattern. [26] The uncertainty in Wigner-
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Seitz radius a can be reduced by measuring ωr directly. [18]
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Figure Captions

[Fig. 1] Schematic diagram (not to scale) for detection of Bragg scattering from an ion cloud,

shown as a small prolate spheroid, inside a Penning trap. An f/5 imaging system (left)

monitors the shape of the cloud, thereby giving the ion density. The diffraction pattern is

relayed to the upper photocathode, filtered by a small aperture (A) and crossed polarizers,

as described in the text.

[Fig. 2] Observed Bragg scattering from N = 2.7×105 ions (a) & (b) compared with the S(∆ka)

calculated for a supercooled fluid and an N = 5 × 103 ion cloud with shells (c).[21] The

diffraction pattern ions (a) is partially blocked, as indicated by a rectangular shadow due

to the laser beam deflector and a square shadow due to a wire mesh. The color scale is

logarithmic. The total flux reaching the detector is approximately' 1×108 photons/s but is

attenuated to avoid saturating the photocathode. The field of view subtends a 5.4o scattering

angle from the z-axis. The differential cross-section (b) is obtained by azimuthally averaging

(a) about the z-axis.

[Fig. 3] Evidence of bulk behavior in an ion OCP. Histogram (a) counts the number of observed

peaks (not intensity) from various diffraction patterns of the same cloud (N = 2.7 × 105

ions), with no adjustable parameters (a is determined from the observed α). By fitting to

the bcc-lattice for the Wigner-Seitz radius a, even the high ∆ka peaks are observed to be

consistent with a bcc lattice (b). The ticks indicate the location of Bragg peaks for various

lattice types.
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